

Design and selection of springs

Dr Hengan Ou

Coates B80a <u>h.ou@nottingham.ac.uk</u>

Outline

- Functions and types
- Helical coil springs (compression and extension or tension)
 - Consideration for selection of springs
 - Selection of compression and extension springs using manufacturer's catalogue
- Other types of springs
 - Belleville washers (disc springs)
 - Design parameters and method of stacking
 - Selection of disc springs using manufacturer's catalogue

Functions of springs

- Springs are flexible machine components that deflects under the action of load and returns to its original shape when load is removed
- Springs are often used to
 - absorb and store energy, e.g. vehicle suspension, railway buffers to control energy, buffer springs in elevators and vibration mounts for machinery
 - Measure forces, e.g. spring balances, gages
 - Apply force and control motion

Types of springs

Helical coil springs

- Helical compression, extension and torsion springs
- > Belleville washers
- Torsion bar springs
- Leaf springs
- Volute springs

https://advanex.co.uk/productsandservices/

Helical coil extension (tension) springs

- Helical coil extension or tension springs are commonly used to store energy or allow tension force to be applied
- > To apply tensile loads, **hooks** are needed at the ends of the springs.

(a) Machine half loop-open

(b) Raised hook

End forms of extension coil springs

Helical coil compression springs

Helical coil compression springs are commonly used to store energy or provide resistant axial force under compression.

http://springipedia.com/

Helical coil torsion springs

> Torsion springs are used to apply a torque or store rotational energy

- When the ends of torsion springs are twisted around the centre of the spring, the torsion spring tries to push them back to their original position.
- Like tension springs, torsion springs are usually close-wound. There are singleand double-bodied types with short hook, hinged straight offset, straight torsion, and special ends.

Types and end forms of torsion springs

Spring rate (extension)

> The **Spring rate equation** for extension springs

$$\boldsymbol{k} = \frac{\boldsymbol{F}}{\boldsymbol{\delta}} \ (N/mm)$$

$$k = \frac{F_{max} - F_o}{L_{max} - L_o} \ (N/mm)$$

or

$$\boldsymbol{k} = \frac{\boldsymbol{F} - \boldsymbol{F}_o}{\boldsymbol{\delta}} \ (N/mm)$$
$$\boldsymbol{\delta} = L - L_o$$

Where, *Lo* is free length, *Lmax* is the max extended length, *Fo* is preload and *Fmax* is the max force at the mas extended length

Various lengths of a extension spring

Spring rate (compression)

Spring rate is slope of the force (F) –deflection (δ) curve of a spring under either compression or tension

$$\boldsymbol{k} = \frac{\boldsymbol{F}}{\boldsymbol{\delta}} \ (N/mm)$$

With given preload (Fa) and installed length (La), and known operation load (Fo) and length (Lo),

$$k = \frac{F_o - F_a}{L_a - L_o} \ (N/mm)$$

The free length (Lf) & length (Ls) are

$$L_{f} = L_{a} + \frac{F_{a}}{k} (mm)$$

$$L_{s} = dN(mm) \qquad \begin{array}{c} d \text{ is wire diameter} \\ N \text{ is total number of coils of the spring} \end{array}$$

Lengths of compression spring

Springs in series and parallel

- Springs may be arranged in different ways of combination
- > Springs in parallel

$$\boldsymbol{k}_{total} = \sum_{i=1}^{n} \boldsymbol{k}_{i} = \boldsymbol{k}_{1} + \boldsymbol{k}_{2} + \cdots$$

> Springs in series

$$\frac{1}{k_{total}} = \sum_{i=1}^{n} \frac{1}{k_i} = \frac{1}{k_1} + \frac{1}{k_2} + \cdots$$

Design and selection of springs

General steps to select a suitable spring

- Understand a suitable type, load range, required free, compressed or extended length and spring rate to meet requirement in given space;
- Know operational conditions for sufficient life without buckling or permanent (creep) deformation;
- Choose suitable material (music wire, stainless steel, bronze, etc) for sufficient energy store and force capabilities;
- Make sure natural frequencies of vibration much higher than the frequency of spring motion that they control;
- Meet other design requirements, e.g. cost, easy access for assembly;
- Select a suitable spring from a Spring manufacturer's catalogue, e.g.
 <u>https://www.leespring.co.uk/</u>

Selection of springs

Selection of springs from suppliers and manufacturers knowing required force, spring rate, deflection range, general operational conditions, etc.

COMPRESSION SPRINGS

End Coils Closed and Ground Square Music Wire (Plated) or Stainless Steel (Passivated)

LEE STOCK NUMBER	OUTSIDE DIAMETER		TO WORK IN HOLE DIA. MIN			NOMINAL WIRE DIAMETER DIA. I		TO WORK OVER ROD DIA. MAX		APPROXIMATE LOAD AT SOLID HEIGHT		NOMINAL FREE LENGTH		IING ITE	APPRO SOLID	XIMATE HEIGHT	PRICE GRO Music S02 Wire Stainless		UP S16 Stainless
	MM	IN	MM	IN	MM	IN	MM	IN	N	LB	ММ	IN	N/MM	LB/IN	MM	IN	м	S	S316
LCM160H 06	15.00	0.591	16.00	0.630	1.60	0.063	11.00	0.433	101.99	22.93	35.00	1.378	4.62	26.40	12.95	0.510	K	М	SPECIAL
LCM160H 07											40.00	1.575	3.99	22.80	14.48	0.570	К	м	SPECIAL
LCM160H 08															· I				
EXTENSION SPRIN														G	5				

Loops at Random Position, except for † springs

free length inside loops 🗕

Music Wire (Plated), or Stainless Steel (Passivated)

	LEE STOCK NUMBER	OUTS	SIDE Eter	NOMINAL WIRE DIAMETER		MAXIMUM LOAD		INITIAL TENSION		NOM FR LEN	INAL EE GTH	SPR	ING	MAX	PRICE Music Wire	GROUP 302 Stainless	
		MM	IN	MM	IN	N	LB	N	LB	MM	IN	N/MM	LB/IN	MM	IN	М	S
.ee Spring® catalogu		25.40	1.000	2.41	0.095	133.45	30.00	12.01	2.70	88.90	3.500	1.524	8.70	168.66	6.640 7.960	Z	BF
https://www.leespri	ng:cosuk	<u>/</u>								114.30	4.500	0.981	5.60	238.25	9.380	BB	BH

A worked example: Selection of compression spring for a spring supplier (LeeSpring)

Select a compression spring required to exert a force of 35 N when compressed to a length of 60 mm. At a length of 48 mm, the force must be 50 N. The spring is to be installed in a hole with 24 mm diameter.

From the above, we know

Fa = 35 N, La = 60 mm & Fo = 50 N, Lo = 48 mm

From slide 9,

$$k = \frac{F_o - F_a}{L_a - L_o} = \frac{50 - 35}{60 - 48} = 1.25 \ (N/mm)$$

 $L_f = 60 + \frac{35}{1.25} = 88 \ (mm)$

Ulee Spring[®]

Outside Diameter

Load

◉N Oka Oam

Reset Al

Check Lee Spring[®] catalogue at Imperial/Inches (https://www.leespring.co.uk/

	About Us	Stock Parts 7	Reques	t a Quote	Request a	Catalogue	Resource C	enter Co	Contact Us		
Part Number	Outside Diameter (mm)	Hole Diameter (mm)	Rod Diameter (mm)	Free Length (mm)	Rate (N/mm)	Solid Height (mm)	Wire Diameter (mm)	Material	Compare		
**	AV	**	**		**	**	~				
LC 050K 09 S316	21.46	22.23	18.19	88.9	0.368	12.34	1.27	SS316			
LC 085K 10 S316	21.46	22.23	16.61	88.9	2.189	30.23	2.16	SS316			
LC 075K 11 M	21.46	22.23	17.12	88.9	1.53	27.27	1.91	MW			
LC 055K 09 S	21.46	22.23	17.98	88.9	0.49	14.45	1.4	SS			
LC 075K 11 S316	21.46	22.23	17.12	88.9	1.275	27.27	1.91	SS316			
LC 091K 08 S	21.46	22.23	16.31	88.9	2.845	33.07	2.31	SS			

Belleville washers (Disc springs)

- Belleville washers are specific springs of conical-shaped discs
 - High load capacity with small deflection in confined space
 - Inherent dampening with parallel stacking

IN SERIES

- Flexibility in **stack arrangement** to meet different operational requirem

IN PARALLEL

Deflection: Same as single Disc Force: Single Disc multiplied by the number of Discs

Deflection: Single Disc multiplied by the number of Discs

Force: Same as single Disc

Same concept as springs in parallel and series

Deflection: Single Disc multiplied by the number of Discs in series

Force: Single Disc multiplied by the number of parallel Discs in a set

- D_e = External Diameter of Disc
- D_i = Internal Diameter of Disc
- I = Free Height of Disc
- t = Material Thickness of Disc
- h_o = Free Cone Height of Disc

<u>Spirol disc springs design guide</u> also available on **Moodle**

Force and deflection relationship

Unlike compression and tension springs, Belleville washers have non-linear force and deflection relationship.

$$F = \frac{4E\delta}{K_1 D_e^2 (1 - \nu^2)} \left[(h - \delta) \left(h - \frac{\delta}{2} \right) t + t^3 \right]$$

Where, $K_1 = \frac{6}{\pi lnR_d} \left[\frac{(R_d - 1)^2}{R_d^2} \right]$ $R_d = \frac{D_e}{D_i}$

Force/deflection predictability is limited to **75%** of total deflection (*ho*). Therefore, *0.15 ho & 0.75 ho are often used* as the initial & max compressions in **Design & Selection of Belleville washers (Disc springs).**

Belleville washer force-deflection curve

Stack combinations

Different force and deflection relationships may be achieved by using different stack combinations

Use **outer edge to rest on both ends**. In the case of **odd numbers of stacks**, the end with **outer edge should be on the end of force/motion**.

Stack combinations to give different Force and deflection characteristics

Selection of disc springs

- Similar to coil springs, suitable Belleville washers (disc springs) may be chosen from suppliers and manufacturers
 - Define outer/inner diameters, force & deflection range
 - Select a single disc spring with data at 0.15ho and 0.75ho
 - Work out a suitable stack combination to meet the requirements of total force (F), deflection (δ or s) and outer/inner diameters (De/Di).

in series for larger deflection

Selection of Disc springs

> Spirol Disc Spring (Belleville washer) catalogue

			Imon	cion	-		Design Force, Deflection and Stresses Based on E = 206 kMPa and μ = 0.3																						
DIN Series		U	men	sions	5		Preload, $s = 0.15 h_0$						s =	$s = 0.25 h_{o}$			<i>s</i> = 0.5 h _o						s =	0.75	δh _。	$s = h_{o}$			
9	D _e	D	t	l _o	\mathbf{h}_{o}	h /†	s		F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	σ _{III}	s	$l_{\rm t}$	F	$\sigma_{_{\rm II}}$	$\sigma_{_{\rm III}}$	s) <i>L</i>	F	$\sigma_{_{\rm II}}$	σ _{III}	s	F	$\sigma_{_{\rm OM}}$
	8.0	3.2	0.20	0.40	0.20	1.00	0.03	0.37	8	37	144	0.05	0.35	12	97	276	0.10	0.30	20	211	433	0.15	0.25	26	409	600	0.20	30	-710
	8.0	3.2	0.30	0.55	0.25	0.83	0.04	0.51	29	113	247	0.06	0.49	46	207	401	0.13	0.43	79	511	750	0.19	0.36	104	912	1,046	0.25	126	-1,332
		1	1	1	1	1		1		1	1	1	1			1	1	1		1	1	1	1			1			
В	50.0	25.4	2.00	3.40	1.40	0.70	0.21	3.19	1226	128	264	0.35	3.05	1,949	230	430	0.70	2.70	3,491	537	810	1.05	2.35	4 762	923	1,140	1.40	5.898	-1.408
	50.0	25.4	2.25	3.75	1.50	0.67	0.23	3.53	1,821	165	312	0.38	3.38	2,905	292	508	0.75	3.00	5,249	675	959	113	2.63	7 217	1,147	1,353	1.50	8,997	-1,697
	50.0	25.4	2.50	3.90	1.40	0.56	0.21	3.69	2,154	204	302	0.35	3.55	3,473	355	494	0.70	3.20	6,437	789	938	1.05	2.85	9,063	1,301	1,332	1.40	11,519	-1,760
Α	50.0	25.4	3.00	4.10	1.10	0.37	0.17	3.94	2,594	249	249	0.28	3.83	4,255	424	409	0.55	3.55	8,214	897	787	0.63	3.27	11,976	1,418	1,135	1.10	15,640	-1,659

(https://www.enivel.com/libuom/main_cotalege/CDIDOL_Disc Covinger us undf) also susilable on Magalla

A worked example: Selection of disc spring

Select Spirol disc springs required to exert an initial force of 200 N at 0.15ho and a maximum operational force of **700 N** under further **2.7 mm** deflection. The spring is to be installed in a hole with 24 mm diameter.

From the above, we know

 $s1 = 0.15ho \rightarrow Fa1 = 200 N \& s2 = 0.75ho \rightarrow Fa2 = 700 N$

From Spirol disc spring table,

 $s1 = 0.15ho = 0.11 mm \rightarrow Fa1 = 214 N$

 $s2 = 0.75ho = 0.56 mm \rightarrow Fa2 = 719 N$

 $\Delta s = S2 - S1 = 0.6ho = 0.45 \text{ (mm)} \rightarrow \text{N}=\text{S}/\Delta s = 2.7/0.45 = 6 \text{ (springs)}$

DISC SPRINGS TO DIN EN 16983 (formerly DIN 2093)

SW model download from LeeSpring®

		D	imon	sion			Design Force, Deflection and Stresses Based on E = 206 kMPa and μ = 0.3																						
DIN Series		D	inter	SIUT	5		Preload, $s = 0.15 h_{\odot}$						<i>s</i> = 0.25 h _o					<i>s</i> = 0.5 h _o					s =	0.75	$s = h_{o}$				
	D,	D	t	l _o	h,	þ.	s) _{I,}	F		σ	s	l,	F	σΠ	σm	S	l,	F	σΠ	σ	S		F	σ	σπ	s	F	σ _{αм}
С	22.5	11.2	0.60	1.40	0.80	1.33	0.12	1.28	160	-23	302	0.20	1.20	240	-14	488	0.40	1.00	370	98	897	0.60	0.80	426	336	1,227	0.80	444	-1,178
В	22.5	11.2	0.80	1.45	0.65	0.81	0.10	1.35	195	93	253	0.16	1.29	306	171	412	0.33	1.13	533	425	771	0.49	0.96	707	762	1,079	0.65	855	-1,276
A	22.5	11.2	1.25	1.75	0.50	0.40	0.08	1.68	424	224	234	0.13	1.63	693	383	384	0.25	1.50	1,330	815	737	0.88	1.37	1,929	1,296	1,059	0.50	2,509	-1,534
	23.0	82	0.70	1 50	0.80	1 14	012	1.38	1.3	37	245	0.20	1.30	279	87	397	0.40	1.10	448	295	733	0.70	0.90	44	626	1,007	0.80	602	-1,173
	23.0	8.2	0.80	1.55	0.75	0.94	0.11	1.44	214	92	237	0.19	1.36	332	175	384	0.38	1.18	560	457	714	0.56	0.99	719	846	991	0.75	842	-1,257
	23.0	8.2	0.90	1.70	0.80	0.89	0.12	1.58	311	125	277	0.20	1.50	486	233	449	0.40	1.30	829	589	837	0.60	1.10	1,078	1,066	1,164	0.80	1,279	-1,508

Some observations

Coil compression spring vs disc spring

- $s1 = 0.15ho = 0.11 mm \rightarrow Fa1 = 214 N$
- $s2 = 0.75ho = 0.56 mm \rightarrow Fa2 = 719 N$
- Compression springs have a large deflection and spring rate range
- Disc springs require a large force to exert a small deflection

Lf = 88 mm, Fa = 35 N, La = 60 mm & Fo = 50 N, Lo = 50 N

Summary

- Springs of various types can be used in different engineering applications
- Spring rate, free or solid length, maximum length (for tension springs) or solid length (for compression springs) are key parameters to select a suitable spring with defined dimensions
- Coil springs (compression or tension) provide a wide range of spring rate, free length, maximum compression or extension for different operational conditions
- Disc springs (Belleville washers) can be a useful solution in situation which requires a large spring rate and relatively small deflection.
- The worked examples in selecting the **compression spring and disc spring** can be used in **your Individual (Gearbox Actuator) Project**.

References and resources

- R.G. Budynas and J.K. Nisbett, Shigley's Mechanical Engineering Design, 10th ed., 2015, Ch 10 (TJ230 BUD)
- Childs, P.R.N., Mechanical Design Engineering Handbook, 2nd ed., 2019, Ch15 (TJ230 CHI) (electronic edition also available on NUSearch)
- <u>https://www.leespring.co.uk/</u>
- <u>https://www.spirol.com/library/main_catalogs/SPIROL-Disc-Springs-us.pdf</u>
- https://www.schnorr.com/literature
- https://www.assocspring.co.uk/